Source code for xarray_einstats.linalg

"""Wrappers for :mod:`numpy.linalg`.

.. tip::

    Most of the functions in this module are also available via the ``.linalg`` accessor
    from :class:`DataArray` objects. See :ref:`linalg_tutorial` for
    example usage.

    The functions that are not available via the accessor are ``einsum``, ``einsum_path``,
    ``matmul`` and ``get_default_dims``.

"""

import warnings

import numpy as np
import xarray as xr

__all__ = [
    "matrix_power",
    "matrix_transpose",
    "cholesky",
    "qr",
    "svd",
    "eig",
    "eigh",
    "eigvals",
    "eigvalsh",
    "norm",
    "cond",
    "det",
    "matrix_rank",
    "slogdet",
    "trace",
    "diagonal",
    "solve",
    "inv",
    "pinv",
]


class MissingMonkeypatchError(Exception):
    """Error specific for the linalg module non-default yet accepted monkeypatch."""


[docs] def get_default_dims(da1_dims, d2_dims=None): """Get the dimensions corresponding to the matrices. Parameters ---------- da1_dims : list of str da2_dims : list of str, optional Used only in case of multiple inputs, otherwise it will keep its default value of ``None`` Returns ------- list of str The dimensions indicating the matrix dimensions. Must be an iterable containing two strings. Warnings -------- ``dims`` is required for functions in the linalg module. This function acts as a placeholder and only raises an error indicating that dims is a required argument unless this function is monkeypatched. It is documented here to show how to write and configure a substitute function. Examples -------- The ``xarray_einstats`` default behaviour is requiring the `dims` argument for functions in the linalg module. Not providing it raises a `TypeError` .. jupyter-execute:: :raises: TypeError from xarray_einstats import linalg, tutorial da = tutorial.generate_matrices_dataarray(5) linalg.inv(da) You need to pass the dimensions corresponding the matrix axes explicitly .. jupyter-execute:: linalg.inv(da, dims=["dim", "dim2"]) However, in many cases it will be possible to identify those dimensions from the list of all dimension names in the input. Here we show how to monkeypatch ``get_default_dims`` to get a different default behaviour. If you follow a convention to label the dimensions corresponding to the matrix axes, you can integrate this logic into ``xarray_einstats``, which will avoid unnecessary repetition, especially if performing several chained linear algebra operations: .. jupyter-execute:: def get_default_dims(dims1, dims2): if dims2 is not None: raise TypeError("Default dims only valid for single input functions") matrix_dims = [dim for dim in dims1 if f"{dim}2" in dims1] if len(matrix_dims) != 1: raise TypeError("Unable to guess default matrix dims") dim = matrix_dims[0] return [dim, f"{dim}2"] linalg.get_default_dims = get_default_dims linalg.inv(da) You can still use ``dims`` explicitly to override those defaults. """ raise MissingMonkeypatchError()
def _attempt_default_dims(func, da1_dims, da2_dims=None): """Raise a more informative warning.""" try: aux = get_default_dims(da1_dims, da2_dims) except MissingMonkeypatchError: raise TypeError( f"{func} missing required argument dims. You must monkeypatch " "xarray_einstats.linalg.get_default_dims for dims=None to be supported" ) from None return aux
[docs] class PairHandler:
[docs] def __init__(self, all_dims, keep_dims): self.potential_out_dims = keep_dims.union(all_dims) self.einsum_axes = list( letter for letter in "zyxwvutsrqponmlkjihgfedcba" if letter not in self.potential_out_dims ) self.dim_map = {d: self.einsum_axes.pop() for d in all_dims} self.out_dims = [] self.out_subscript = ""
[docs] def process_dim_da_pair(self, da, dim_sublist): da_dims = da.dims out_dims = [ dim for dim in da_dims if dim in self.potential_out_dims and dim not in dim_sublist ] subscripts = "" updated_in_dims = dim_sublist.copy() for dim in out_dims: self.out_dims.append(dim) sub = self.einsum_axes.pop() self.out_subscript += sub subscripts += sub updated_in_dims.insert(0, dim) for dim in dim_sublist: subscripts += self.dim_map[dim] if len(da_dims) > len(out_dims) + len(dim_sublist): return f"...{subscripts}", updated_in_dims return subscripts, updated_in_dims
[docs] def get_out_subscript(self): if not self.out_subscript: return "" return f"->{self.out_subscript}"
[docs] def _einsum_parent(dims, *operands, keep_dims=frozenset()): """Preprocess inputs to call :func:`numpy.einsum` or :func:`numpy.einsum_path`. Parameters ---------- dims : list of list of str List of lists of dimension names. It must have the same length or be only one item longer than ``operands``. If both have the same length, the generated pattern passed to {func}`numpy.einsum` won't have ``->`` nor right hand side. Otherwise, the last item is assumed to be the dimension specification of the output DataArray, and it can be an empty list to add ``->`` but no subscripts. operands : DataArray DataArrays for the operation. Multiple DataArrays are accepted. keep_dims : set, optional Dimensions to exclude from summation unless specifically specified in ``dims`` See Also -------- xarray_einstats.einsum, xarray_einstats.einsum_path numpy.einsum, numpy.einsum_path xarray_einstats.einops.reduce """ if len(dims) == len(operands): in_dims = dims out_dims = None elif len(dims) == len(operands) + 1: in_dims = dims[:-1] out_dims = dims[-1] else: raise ValueError("length of dims and operands not compatible") all_dims = set(dim for sublist in dims for dim in sublist) handler = PairHandler(all_dims, keep_dims) in_subscripts = [] updated_in_dims = [] for da, sublist in zip(operands, in_dims): in_subs, up_dims = handler.process_dim_da_pair(da, sublist) in_subscripts.append(in_subs) updated_in_dims.append(up_dims) in_subscript = ",".join(in_subscripts) if out_dims is None: out_subscript = handler.get_out_subscript() out_dims = handler.out_dims elif not out_dims: out_subscript = "->" else: out_subscript = "->" + "".join(handler.dim_map[dim] for dim in out_dims) if out_subscript and "..." in in_subscript: out_subscript = "->..." + out_subscript[2:] subscripts = in_subscript + out_subscript return subscripts, updated_in_dims, out_dims
[docs] def _translate_pattern_string(subscripts): """Translate a pattern given as string of dimension names to list of dimension names.""" if "->" in subscripts: in_subscripts, out_subscript = subscripts.split("->") else: in_subscripts = subscripts out_subscript = None in_dims = [ [dim.strip(", ") for dim in in_subscript.split(" ")] for in_subscript in in_subscripts.split(",") ] if out_subscript is None: dims = in_dims elif not out_subscript: dims = [*in_dims, []] else: out_dims = [dim.strip(", ") for dim in out_subscript.split(" ")] dims = [*in_dims, out_dims] return dims
[docs] def _einsum_path(dims, *operands, keep_dims=frozenset(), optimize=None, **kwargs): """Wrap :func:`numpy.einsum_path` directly.""" op_kwargs = {} if optimize is None else {"optimize": optimize} subscripts, in_dims, _ = _einsum_parent(dims, *operands, keep_dims=keep_dims) updated_in_dims = [] for sublist, da in zip(in_dims, operands): updated_in_dims.append([dim for dim in da.dims if dim not in sublist] + sublist) return xr.apply_ufunc( np.einsum_path, subscripts, *operands, input_core_dims=[[], *updated_in_dims], output_core_dims=[[]], kwargs=op_kwargs, **kwargs, ).values.item()
[docs] def einsum_path(dims, *operands, keep_dims=frozenset(), optimize=None, **kwargs): """Expose :func:`numpy.einsum_path` with an xarray-like API. See :func:`xarray_einstats.einsum` for a detailed description of ``dims`` and ``operands``. Parameters ---------- dims : list of list of str operands : DataArray optimize : str, optional ``optimize`` argument for :func:`numpy.einsum_path`. It defaults to None so that we always default to numpy's default, without needing to keep the call signature here up to date. kwargs : dict, optional Passed to :func:`xarray.apply_ufunc` """ if isinstance(dims, str): dims = _translate_pattern_string(dims) return _einsum_path(dims, *operands, keep_dims=keep_dims, optimize=optimize, **kwargs)
[docs] def _einsum(dims, *operands, keep_dims=frozenset(), out_append="{i}", einsum_kwargs=None, **kwargs): """Wrap :func:`numpy.einsum` directly. The user facing version is :func:`xarray_einstats.einsum` which exposes two APIs. """ if einsum_kwargs is None: einsum_kwargs = {} subscripts, updated_in_dims, out_dims = _einsum_parent(dims, *operands, keep_dims=keep_dims) updated_out_dims = [] for i, dim in enumerate(out_dims): totalcount = out_dims.count(dim) count = out_dims[:i].count(dim) + 1 updated_out_dims.append( dim + out_append.format(i=count) if (totalcount > 1) and (count > 1) else dim ) return xr.apply_ufunc( np.einsum, subscripts, *operands, input_core_dims=[[], *updated_in_dims], output_core_dims=[updated_out_dims], kwargs=einsum_kwargs, **kwargs, )
def raw_einsum(*args, **kwargs): """Wrap numpy.einsum. DEPRECATED """ warnings.warn( "`raw_einsum` has been deprecated. Its functionality has been merged into `einsum`", DeprecationWarning, ) return einsum(*args, **kwargs)
[docs] def einsum(dims, *operands, keep_dims=frozenset(), out_append="{i}", einsum_kwargs=None, **kwargs): """Expose :func:`numpy.einsum` with an xarray-like API. Usage examples of all arguments is available at the :ref:`einsum section <linalg_tutorial/einsum>` of the linear algebra module tutorial. Parameters ---------- dims : str or list of list of str If `dims` is a string it is intepreted as the subscripts for the summation as dimension names. Spaces indicate multiple dimensions in a DataArray and commas indicate multiple DataArray operands. Only dimensions with no spaces, nor commas nor ``->`` characters are valid. If `dims` is a list it is interpreted as list of lists of dimension names. It must have the same length or be only one item longer than `operands`. If both have the same length, the generated pattern passed to {func}`numpy.einsum` won't have ``->`` nor right hand side. Otherwise, the last item is assumed to be the dimension specification of the output DataArray. In this case it can be an empty list to add ``->`` but no subscripts. operands : DataArray DataArrays for the operation. Multiple DataArrays are accepted. keep_dims : set, optional Dimensions to exclude from summation unless specifically specified in ``dims`` out_append : str, optional Pattern to append to repeated dimension names in the output (if any). The pattern should contain a substitution for variable ``i``, which indicates the number of the current dimension among the repeated ones. Its default value is ``"{i}"``. To keep repeated dimension names use ``""``. The first occurrence will keep the original name and not use ``out_append``. It will therefore inherit the coordinate values in case there were any. einsum_kwargs : dict, optional Passed to :func:`numpy.einsum` kwargs : dict, optional Passed to :func:`xarray.apply_ufunc` Notes ----- Dimensions present in ``dims`` will be reduced, but unlike {func}`xarray.dot` it does so only for that variable. """ if isinstance(dims, str): dims = _translate_pattern_string(dims) return _einsum( dims, *operands, keep_dims=keep_dims, out_append=out_append, einsum_kwargs=einsum_kwargs, **kwargs, )
[docs] def matmul(da, db, dims=None, *, out_append="2", **kwargs): """Wrap :func:`numpy.linalg.matmul`. Usage examples of all arguments is available at the :ref:`matmul section <linalg_tutorial/matmul>` of the linear algebra module tutorial. """ rename = False if dims is None: dims = _attempt_default_dims("matmul", da.dims, db.dims) if len(dims) == 3: dim1, dim2, dim3 = dims dims1 = [dim1, dim2] dims2 = [dim2, dim3] out_dims = [dim1, dim3] if dim1 == dim3: db = db.rename({dim3: dim3 + out_append}) dims2 = [dim2, dim3 + out_append] out_dims = [dim1, dim3 + out_append] else: if dim3 in da.dims: da = da.rename({dim3: dim3 + out_append}) if dim1 in db.dims: db = db.rename({dim1: dim1 + out_append}) elif len(dims) != 2: raise ValueError( "matmul can be one of '[str, str]', '[str, str, str]' or '[[str, str], [str, str]]'" ) elif isinstance(dims[0], str): dims1 = dims dims2 = dims out_dims = dims else: rename = True dim11, dim12 = dims[0] dim21, dim22 = dims[1] da = da.rename({dim11: "__aux_dim11__", dim12: "__aux_dim12__"}) db = db.rename({dim21: "__aux_dim21__", dim22: "__aux_dim22__"}) dims1 = ["__aux_dim11__", "__aux_dim12__"] dims2 = ["__aux_dim21__", "__aux_dim22__"] out_dims = ["__aux_dim11__", "__aux_dim22__"] matmul_aux = xr.apply_ufunc( np.matmul, da, db, input_core_dims=[dims1, dims2], output_core_dims=[out_dims], **kwargs, ) if rename: return matmul_aux.rename( __aux_dim11__=dim11, __aux_dim22__=dim22 + out_append if dim22 == dim11 else dim22 ) return matmul_aux
[docs] def matrix_transpose(da, dims): """Transpose the underlying matrix without modifying the dimensions. This convenience function uses :meth:`~xarray.DataArray.swap_dims` followed by :meth:`~xarray.DataArray.transpose` to get the equivalent of a matrix transposition. Parameters ---------- da : DataArray Input DataArray dims : list of str Matrix dimensions Returns ------- DataArray The DataArray after transposing the matrix data but leaving the dimensions untouched. """ if dims is None: dims = _attempt_default_dims("matrix_power", da.dims) dim1, dim2 = dims return da.swap_dims({dim1: dim2, dim2: dim1}).transpose(..., *dims)
[docs] def matrix_power(da, n, dims=None, **kwargs): """Wrap :func:`numpy.linalg.matrix_power`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("matrix_power", da.dims) return xr.apply_ufunc( np.linalg.matrix_power, da, n, input_core_dims=[dims, []], output_core_dims=[dims], **kwargs )
[docs] def cholesky(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.cholesky`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("cholesky", da.dims) return xr.apply_ufunc( np.linalg.cholesky, da, input_core_dims=[dims], output_core_dims=[dims], **kwargs )
[docs] def qr(da, dims=None, *, mode="reduced", out_append="2", **kwargs): # pragma: no cover """Wrap :func:`numpy.linalg.qr`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("qr", da.dims) m_dim, n_dim = dims m, n = len(da[m_dim]), len(da[n_dim]) k, k_dim = (m, m_dim) if n >= m else (n, n_dim) mode = mode.lower() if mode == "reduced": out_dims = [ [m_dim, k_dim + (out_append if k_dim == m_dim else "")], [k_dim, n_dim + (out_append if k_dim == n_dim else "")], ] elif mode == "complete": out_dims = [[m_dim, m_dim + out_append], [m_dim, n_dim]] elif mode == "r": out_dims = [[m_dim if k == m else n_dim + out_append, n_dim]] elif mode == "raw": out_dims = [[n_dim, m_dim], [m_dim if k == m else n_dim]] else: raise ValueError("mode not recognized") return xr.apply_ufunc( np.linalg.qr, da, input_core_dims=[dims], output_core_dims=out_dims, kwargs={"mode": mode}, **kwargs, )
[docs] def svd( da, dims=None, *, full_matrices=True, compute_uv=True, hermitian=False, out_append="2", **kwargs ): """Wrap :func:`numpy.linalg.svd`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("svd", da.dims) m_dim, n_dim = dims m, n = len(da[m_dim]), len(da[n_dim]) k, k_dim = (m, m_dim) if m <= n else (n, n_dim) s_dims = [k_dim] if full_matrices: u_dims = [m_dim, m_dim + out_append] vh_dims = [n_dim, n_dim + out_append] else: if m == k: u_dims = [m_dim, k_dim + out_append] vh_dims = [k_dim, n_dim] else: u_dims = [m_dim, k_dim] vh_dims = [k_dim, n_dim + out_append] if compute_uv: out_dims = [u_dims, s_dims, vh_dims] else: out_dims = [s_dims] return xr.apply_ufunc( np.linalg.svd, da, input_core_dims=[dims], output_core_dims=out_dims, kwargs={"full_matrices": full_matrices, "compute_uv": compute_uv, "hermitian": hermitian}, **kwargs, )
[docs] def eig(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.eig`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("eig", da.dims) return xr.apply_ufunc( np.linalg.eig, da, input_core_dims=[dims], output_core_dims=[dims[-1:], dims], **kwargs )
[docs] def eigh(da, dims=None, *, UPLO="L", **kwargs): # pylint: disable=invalid-name """Wrap :func:`numpy.linalg.eigh`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("eigh", da.dims) return xr.apply_ufunc( np.linalg.eigh, da, input_core_dims=[dims], output_core_dims=[dims[-1:], dims], kwargs={"UPLO": UPLO}, **kwargs, )
[docs] def eigvals(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.eigvals`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("eigvals", da.dims) return xr.apply_ufunc( np.linalg.eigvals, da, input_core_dims=[dims], output_core_dims=[dims[-1:]], **kwargs )
[docs] def eigvalsh(da, dims=None, *, UPLO="L", **kwargs): # pylint: disable=invalid-name """Wrap :func:`numpy.linalg.eigvalsh`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("eigvalsh", da.dims) return xr.apply_ufunc( np.linalg.eigvalsh, da, input_core_dims=[dims], output_core_dims=[dims[-1:]], kwargs={"UPLO": UPLO}, **kwargs, )
[docs] def norm(da, dims=None, *, ord=None, **kwargs): # pylint: disable=redefined-builtin """Wrap :func:`numpy.linalg.norm`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("norm", da.dims) norm_kwargs = {"ord": ord} if isinstance(dims, str): in_dims = [dims] norm_kwargs["axis"] = -1 else: in_dims = dims norm_kwargs["axis"] = (-2, -1) return xr.apply_ufunc( np.linalg.norm, da, input_core_dims=[in_dims], kwargs=norm_kwargs, **kwargs )
[docs] def cond(da, dims=None, *, p=None, **kwargs): # pylint: disable=invalid-name """Wrap :func:`numpy.linalg.cond`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("cond", da.dims) return xr.apply_ufunc(np.linalg.cond, da, input_core_dims=[dims], kwargs={"p": p}, **kwargs)
[docs] def det(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.det`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("det", da.dims) return xr.apply_ufunc(np.linalg.det, da, input_core_dims=[dims], **kwargs)
[docs] def matrix_rank(da, dims=None, *, tol=None, hermitian=False, **kwargs): """Wrap :func:`numpy.linalg.matrix_rank`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("matrix_rank", da.dims) return xr.apply_ufunc( np.linalg.matrix_rank, da, input_core_dims=[dims], kwargs={"tol": tol, "hermitian": hermitian}, **kwargs, )
[docs] def slogdet(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.slogdet`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("slogdet", da.dims) return xr.apply_ufunc( np.linalg.slogdet, da, input_core_dims=[dims], output_core_dims=[[], []], **kwargs )
[docs] def trace(da, dims=None, *, offset=0, dtype=None, out=None, **kwargs): """Wrap :func:`numpy.trace`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("trace", da.dims) trace_kwargs = {"offset": offset, "dtype": dtype, "out": out, "axis1": -2, "axis2": -1} return xr.apply_ufunc(np.trace, da, input_core_dims=[dims], kwargs=trace_kwargs, **kwargs)
[docs] def diagonal(da, dims=None, *, offset=0, **kwargs): """Wrap :func:`numpy.diagonal`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("diagonal", da.dims) diagonal_kwargs = {"offset": offset, "axis1": -2, "axis2": -1} out_dims = [dims[0] if offset == 0 else "diag_id"] return xr.apply_ufunc( np.diagonal, da, input_core_dims=[dims], output_core_dims=[out_dims], kwargs=diagonal_kwargs, **kwargs, )
[docs] def solve(da, db, dims=None, **kwargs): """Wrap :func:`numpy.linalg.solve`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. Parameters ---------- da : DataArray db : DataArray dims : sequence of hashable, optional It can have either length 2 or 3. If length 2, both dimensions should have the same length and be present in `da`, and only one of them should also be present in `db`. If length 3, the first two elements behave the same; the third element is a dimension of arbitrary length which can only present in `db`. From NumPy's docstring, a has ``(..., M, M)`` shape and b has ``(M,) or (..., M, K)``. Here, b can be ``(..., M)`` this case is not limited to 1d, so dims with length two indicates the two dimensions of length M, with length 3 it is something like (M, M, K), which can be done thanks to named dimensions. **kwargs : mapping Passed to :func:`xarray.apply_ufunc` Examples -------- Dimension naming conventions are designed to ease inverse operation with :func:`xarray.dot`. The following example illustrates what this means and how to check that solve worked correctly .. jupyter-execute:: import xarray as xr import numpy as np from xarray_einstats.linalg import solve from xarray_einstats.tutorial import generate_matrices_dataarray matrices = generate_matrices_dataarray() matrices .. jupyter-execute:: b = matrices.std("dim2") # dims (batch, experiment, dim) y2 = solve(matrices, b, dims=("dim", "dim2")) # dims (batch, experiment, dim2) np.allclose(b, xr.dot(matrices, y2, dims="dim2")) """ if dims is None: dims = _attempt_default_dims("solve", da.dims, db.dims) if len(dims) == 3: # solve(a, b) in numpy has signature a: (..., M, M) and b: (..., M, K) # we look which dim is in b -> represents the M k_dim = dims[-1] # the last element in dims represents the K remove_k = False if k_dim in da: raise ValueError( f"Found {k_dim} in `da`. If provided, the 3rd element of 'dims' " "can only be in `db`." ) else: # a: (..., M, M) and b: (..., M) is not supported, so we add a dummy K k_dim = "__k_aux_dim__" remove_k = True db = db.expand_dims(k_dim) b_dim = dims[0] if dims[0] in db.dims else dims[1] y_dim = dims[1] if dims[0] in db.dims else dims[0] in_dims = [dims[:2], [b_dim, k_dim]] out_dims = [[y_dim, k_dim]] da_out = xr.apply_ufunc( np.linalg.solve, da, db, input_core_dims=in_dims, output_core_dims=out_dims, **kwargs ) if remove_k: return da_out.squeeze(k_dim, drop=True) return da_out
[docs] def inv(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.inv`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. """ if dims is None: dims = _attempt_default_dims("inv", da.dims) return xr.apply_ufunc( np.linalg.inv, da, input_core_dims=[dims], output_core_dims=[dims], **kwargs )
def pinv(da, dims=None, **kwargs): """Wrap :func:`numpy.linalg.pinv`. Usage examples of all arguments is available at the :ref:`linalg_tutorial` page. If both "rtol" and "rcond" are provided, "rtol" will be ignored. """ if dims is None: dims = _attempt_default_dims("pinv", da.dims) rcond = kwargs.pop("rtol", None) rcond = kwargs.pop("rcond", rcond) return xr.apply_ufunc( np.linalg.pinv, da, rcond, input_core_dims=[dims, []], output_core_dims=[dims[::-1]], **kwargs, )